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Abstract—In this paper, we investigate how the eye state (open
or closed) can be predicted by measuring brain waves with an
EEG. To this end, we recorded a corpus containing the activation
strength of the fourteen electrodes of a commercial EEG headset
as well as the manually annotated eye state corresponding to
the recorded data. We tested 42 different machine learning
algorithms on their performance to predict the eye state after
training with the corpus. The best-performing classifier, KStar,
produced a classification error rate of only 2.7% which is a 94%
relative reduction over the majority vote of 44.9% classification
error.

I. INTRODUCTION

For many applications requiring human input, measuring
brain activity by way of electroencephalography (EEG) can
be of substantial benefit. For instance, brain stimuli have
been used as input mode for computer games [1], to track
emotions [2], for handicapped persons to control devices [3],
or for military scenarios [4]. Especially the latter two examples
require accurate detection of the stimuli in question to avoid
false alarms. It is therefore of utter importance to determine
which specific stimuli can be detected with sufficient accuracy.

Several papers investigated the differences between the two
eye states (that is, whether eyes are open or closed). [5]
came to the conclusion that the “greatest difference between
two states was that the power in the eye closed state was
much higher than that in the eye open state.” However, the
authors did not pursue this finding any further in an attempt
to use power as a feature for predicting the eye state. [6]
investigated how to track eye blinking (the change of the
eye state) based on EEG input. This study was limited to
a single classification algorithm (artificial neural networks—
ANNs) producing a very poor performance. Furthermore, eye
blinking and eye state are intrinsically different properties in
that the former is an event of a short duration whereas the
latter can vary largely in duration (see also Figure 1).

To sum up, none of the papers discussed above tried to
predict the eye state based on a given set of EEG sensor
values. Even though [7] mentions the “potential to be used as
a switching mechanism for assistive technologies”, the authors
do not go so far as to implement an algorithm performing said
classification, not to speak of measuring its performance on a
collected corpus.

To render our research as useful as possible for the scientific
and technological community, we decided not to use a medical

EEG but the Emotiv EPOC headset1. Compared to a medical
EEG, the EPOC headset is much more affordable, and it can
be set up quickly and without the help of another person.
Furthermore, we used the open-source software Weka2 for our
classification experiments making results easily reproducible
by other researchers. To this end, we also released the corpus
we created for the present work to the public domain (see
Section II-C for details).

After running extensive experiments with up to 42 different
classifiers and multiple settings of tuning parameters, we were
able to achieve a classification error rate of less than 3% using
the instance-based learner KStar [8]. This result indicates that
eye state prediction has the potential to be used as accurate
binary input channel.

The rest of the paper is structured as follows: Section II
gives more details about the technical details of the EEG
measurement we performed and the corpus we established.
After giving a brief overview about the performance of all
classifiers we compared, Section III describes the tests with
KStar together with an analysis of the results. Finally, Sec-
tion IV draws conclusions and outlines future perspectives of
the present work.

II. MATERIALS AND METHODS

A. Stimuli and Probands

The experiment was carried out in a quiet room. During
the experiment, the proband was being videotaped. To prevent
artifacts, the proband was not aware of the exact start time
of the measurement. Instead, he was told to sit relaxed, look
straight to the camera, and change the eye state at free will.
Only additional constraint was that, accumulated over the
entire session, the duration of both eye states should be about
the same and that the individual intervals should vary greatly
in length (from eye blinking to longer stretches), see Figure 1.

B. EEG Measurement

The duration of the measurement was 117 seconds. The
sampling rate of the EEG headset A/D converter was four
times the frame rate of the video camera. The eye state
was manually annotated by analyzing the video recordings
aligned with the EEG data. Both, open or partially open eyes

1http://www.emotiv.com
2http://www.cs.waikato.ac.nz/ml/weka



Fig. 1. Distribution of eye states during the two minutes. 0 represents eye
open and 1 eye closed.

were categorized as open; only completely closed eyes were
categorized as closed. Three instances (out of almost 15k) were
removed from the corpus because of obvious transmission
errors.

C. The corpus

The corpus consists of 14977 instances with 15 attributes
each (14 attributes representing the values of the electrodes
and the eye state). The instances are stored in the corpus in
chronological order to be able to analyze temporal dependen-
cies. 8255 (55.12%) instances of the corpus correspond to the
eye open and 6722 (44.88%) instances to the eye closed state.

Table I shows the value ranges of the 14 sensors in the
corpus. There is an obvious difference in amplitude of certain
sensors when comparing the range of values for different eye
states. On the one hand, for the sensors F7, F3, O2, P8, T8,
FC6, and F4, the maximum values for the eye open state
are higher than the maximum values of the eye closed state
while the minimum values are nearly the same. On the other
hand, for the sensors AF3, FC5, T7, P7, O1, F8, and AF4,
the minimum values for the eye open state are lower than for
the eye closed state while the maximum values are about the
same. All sensors have in common that open eye state comes
along with a higher value range than the eye closed state while
the mean stays nearly the same. Accordingly, also the standard
deviation increases.

As motivated above, sensors could be split into two groups.
In the first group, the maximum increases when eyes open
while, in the other group, the minimum decreases in the same
event. Most sensors of the first group happen to be located on
the right hemisphere while most of the second group are on
the left hemisphere of the brain, as displayed in Figure 2.

To encourage the research community to further explore the
task of eye state prediction and allow the interested reader to
reproduce the results reported in this paper, we released our
corpus to the public domain. It can be downloaded from

http://suendermann.com/corpus/EEG Eyes.arff.gz.

Fig. 2. Overview of the sensor position and the corresponding behavior group.
Blue corresponds to a maximum increase and red to a minimum decrease when
opening eyes.

TABLE I
RANGES AND MEANS OF THE SENSOR VALUES FOR THE EYE STATES

Eye closed open

State min mean max min mean max

AF3 4198 4305 4445 1030 4297 4504

F7 3905 4005 4138 3924 4013 7804

F3 4212 4265 4367 4197 4263 5762

FC5 4058 4121 4214 2453 4123 4250

T7 4309 4341 4435 2089 4341 4463

P7 4574 4618 4708 2768 4620 4756

O1 4026 4073 4167 3581 4071 4178

O2 4567 4616 4695 4567 4615 7264

P8 4147 4202 4287 4152 4200 4586

T8 4174 4233 4323 4152 4229 6674

FC6 4130 4204 4319 4100 4200 5170

F4 4225 4281 4368 4201 4277 7002

F8 4510 4610 4811 86 4601 4833

AF4 4246 4367 4552 1366 4356 4573

III. MACHINE LEARNING ALGORITHMS

A. General testing

For our classification experiments, we used the Weka
toolkit [9]. At the beginning, ten-fold cross-validation was
carried out for all suitable classifiers in Weka with their default
parameter settings to get a general overview. Results of this
experiment are shown in Figure 3.

http://suendermann.com/corpus/EEG_Eyes.arff.gz


Fig. 3. Performance of all classifiers with default settings. Baseline perfor-
mance (i.e. majority vote) is shown in red.

Surprisingly, standard classifiers such as naı̈ve Bayes [10],
SMO [11], logistic regression [12], or ANNs [13] with a
proven track of high classification performance produced
rather poor results on this task (over 30% classification er-
ror). Decision tree algorithms such as JRip [14] or J48 [15]
performed much better (about 15%). However, instance-based
learners such as IB1 [16] and KStar [8] outperformed decision
trees yet again substantially. The latter achieved the clearly
best performance with a classification error rate of merely
3.2%.

B. KStar

Being an instance-based learning algorithm, KStar classifies
an instance by comparing it to a database of pre-classified
instances. In this comparison, a parameter (the global blend b)
influences to which extent neighbors of the instance to be clas-

sified are taken into account. By definition, the global blend
can vary between 0 (just the closest neighbor is considered)
and 100 (all instances in the corpus are equally considered).

We ran an experiment to find which global blend is most
beneficial and found that b ≈ 40 is a good choice for the
present corpus. The error rate decreased to 2.7% which is a
relative reduction of 15% compared to the error rate when
using the default setting b = 20 (see Figures 4 and 5). The
relative error rate improvement over the majority vote baseline
of 44.9% was 94%.

Fig. 4. Performance of KStar for all possible values of global blending.

Fig. 5. Performance of KStar for the best values. Different scaling of Fig. 4
to see the minimum of the classification error rate.

In order to informally investigate the robustness of KStar
w.r.t. to the transmission errors mentioned in Section II-B,
we also tested its performance when inserting instances with
unrealistic values (significantly higher than the usual sensor
maxima). KStar exhibited nearly no performance degradation
as opposed to multiple other classifiers (like naı̈ve Bayes
and ANNs). Intuitively, the use of a global blend b < 100
makes sure that extreme outliers get filtered out of the instance
sets under consideration, so, their impact is negligible. In



contrast, probabilistic classifiers and many others draw con-
clusion based on the entire body of available training data.
Hence, extreme outliers may significantly skew distributions
and thereby negatively affect performance.

Drawback of KStar and other instance-based classifiers
is their runtime behavior. To execute a test over the entire
described corpus took over 38 minutes on a system with
Ubuntu 12.04.1 LTS, QEMU Virtual CPU version 0.15.1, dual
core with 2.4GHz each and 32GB RAM, corresponding to a
real time factor of about 20. This observation will have to
be taken into account when attempting to track eye state in
real-world systems.

IV. CONCLUSIONS AND FUTURE WORK

This paper demonstrated that it is possible to predict eye
state using EEG sensor input with an accuracy of more than
97%. The high accuracy and the fact that no special training is
required suggest the use of eye state inferred from EEG signals
for controlling tasks. However, the present study involved only
a single subject which raises the question whether results
are generalizable. We are currently investigating the presented
technique’s behavior across multiple probands including user-
independent training. Preliminary results of these experiments
look very encouraging. To allow for applying the presented
technology securely and effectively, the dependence of eye
state prediction accuracy on other activities carried out by
the subjects will have to be explored. Furthermore, it would
be interesting to see whether the number of sensors can be
decreased by means of feature selection [17] without compro-
mising performance. Also other techniques for dimensionality
reduction such as linear discriminant analysis [18] could be
useful to look at. Less sensors would reduce production cost
of required EEG devices and also speed up instance-based
classification.
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